Real-time Dynamic MRI Reconstruction using Stacked Denoising Autoencoder

نویسنده

  • Angshul Majumdar
چکیده

In this work we address the problem of real-time dynamic MRI reconstruction. There are a handful of studies on this topic; these techniques are either based on compressed sensing or employ Kalman Filtering. These techniques cannot achieve the reconstruction speed necessary for real-time reconstruction. In this work, we propose a new approach to MRI reconstruction. We learn a non-linear mapping from the unstructured aliased images to the corresponding clean images using a stacked denoising autoencoder (SDAE). The training for SDAE is slow, but the reconstruction is very fast only requiring a few matrix vector multiplications. In this work, we have shown that using SDAE one can reconstruct the MRI frame faster than the data acquisition rate, thereby achieving real-time reconstruction. The quality of reconstruction is of the same order as a previous compressed sensing based online reconstruction technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoding Stacked Denoising Autoencoders

Data representation in a stacked denoising autoencoder is investigated. Decoding is a simple technique for translating a stacked denoising autoencoder into a composition of denoising autoencoders in the ground space. In the infinitesimal limit, a composition of denoising autoencoders is reduced to a continuous denoising autoencoder, which is rich in analytic properties and geometric interpretat...

متن کامل

A Template-Based Protein Structure Reconstruction Method Using Deep Autoencoder Learning

Protein structure prediction is an important problem in computational biology, and is widely applied to various biomedical problems such as protein function study, protein design, and drug design. In this work, we developed a novel deep learning approach based on a deeply stacked denoising autoencoder for protein structure reconstruction. We applied our approach to a template-based protein stru...

متن کامل

LLNet: A deep autoencoder approach to natural low-light image enhancement

This paper proposes a deep autoencoder-based approach to identify signal features from lowlight images and adaptively brighten images without over-amplifying/saturating the lighter parts in images with a high dynamic range. In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are essential to making ...

متن کامل

Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders

Computer-aided diagnosis (CAD) is a promising tool for accurate and consistent diagnosis and prognosis. Cell detection and segmentation are essential steps for CAD. These tasks are challenging due to variations in cell shapes, touching cells, and cluttered background. In this paper, we present a cell detection and segmentation algorithm using the sparse reconstruction with trivial templates and...

متن کامل

Marginalizing stacked linear denoising autoencoders

Stacked denoising autoencoders (SDAs) have been successfully used to learn new representations for domain adaptation. They have attained record accuracy on standard benchmark tasks of sentiment analysis across different text domains. SDAs learn robust data representations by reconstruction, recovering original features from data that are artificially corrupted with noise. In this paper, we prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1503.06383  شماره 

صفحات  -

تاریخ انتشار 2015